

Eigenvalues and Eigenvectors - Problems 1

Find all the eigenvalues and corresponding eigenvectors, and say whether the matrix A can or cannot be diagonalized. If the matrix can be diagonalized, give a matrix P such that $P^{-1} A P=D$ is diagonal.
1.

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)
$$

2.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right)
$$

3.

$$
A=\left(\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

4.

$$
A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right)
$$

Eigenvalues and Eigenvectors - Answers 1

1. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(\lambda-5)(\lambda+1)=0$, so the eigenvalues are $\lambda=-1$ and $\lambda=5$ with corresponding eigenvectors $\binom{-2}{1}$ and $\binom{1}{1}$, respectively. Thus A can be diagonalised as

$$
P^{-1} A P=\left(\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right)=D .
$$

Note that the order of the columns in P does not matter, provided that the order of the eigenvalues in D matches. In addition any non-zero multiples of the above eigenvectors also gives a correct diagonalisation.
2. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)(3-\lambda)=0$, so the eigenvalues are $\lambda=1, \lambda=2$ and $\lambda=3$ with corresponding eigenvectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}9 \\ 6 \\ 2\end{array}\right)$, respectively. Thus A can be diagonalised as

$$
P^{-1} A P=\left(\begin{array}{lll}
1 & 2 & 9 \\
0 & 1 & 6 \\
0 & 0 & 2
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 9 \\
0 & 1 & 6 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)=D .
$$

3. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(1-\lambda)\left(\lambda^{2}-\lambda-2\right)=0$, so the eigenvalues are $\lambda=-1, \lambda=1$ and $\lambda=2$ with corresponding eigenvectors $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$, respectively.
Thus A can be diagonalised as

$$
P^{-1} A P=\left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=D .
$$

4. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(1-\lambda)\left(\lambda^{2}-\lambda+4\right)=0$, so the eigenvalues are $\lambda=1$ and $\lambda=2$, with $\lambda=2$ being a repeated eigenvalue. The eigenvalue $\lambda=1$ has corresponding eigenvector $\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$. However there is only one independent eigenvector $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ corresponding to the eigenvalue $\lambda=2$, so in this case A cannot be diagonalised.
